

Cosmotile

[image: PyPI] [https://pypi.org/project/cosmotile/]
[image: Status] [https://pypi.org/project/cosmotile/]
[image: Python Version] [https://pypi.org/project/cosmotile]
[image: License]

[image: Read the documentation at https://cosmotile.readthedocs.io/]
[image: Tests] [https://github.com/steven-murray/cosmotile/actions?workflow=Tests]
[image: Codecov] [https://app.codecov.io/gh/steven-murray/cosmotile]

[image: pre-commit] [https://github.com/pre-commit/pre-commit]
[image: Black] [https://github.com/psf/black]

Create cosmological lightcones from coeval simulations.

This algorithm is taken from the code in https://github.com/piyanatk/cosmotile, but
is repackaged and re-tooled.

Features

	Fast tiling of finite, periodic cosmic simulations onto arbitrary angular coordinates.

	Generate different realizations by translation and rotation.

Installation

You can install Cosmotile via pip [https://pip.pypa.io/] from PyPI [https://pypi.org/]:

$ pip install cosmotile

Usage

Please see the Command-line Reference for details.

Contributing

Contributions are very welcome.
To learn more, see the Contributor Guide.

License

Distributed under the terms of the MIT license,
Cosmotile is free and open source software.

Issues

If you encounter any problems,
please file an issue [https://github.com/steven-murray/cosmotile/issues] along with a detailed description.

Credits

This project was generated from @cjolowicz [https://github.com/cjolowicz]’s Hypermodern Python Cookiecutter [https://github.com/cjolowicz/cookiecutter-hypermodern-python] template.

The algorithm used in this repository is derived from the cosmotile module in
https://github.com/nithyanandan/AstruUtils, which was later modularised in
https://github.com/piyanatk/cosmotile.

Acknowledgments

If you find cosmotile useful in your project, please star this repository and, if
applicable, cite https://arxiv.org/abs/1708.00036.

Usage

A simple example of using cosmotile is as follows:

import cosmotile
import numpy as np

Create an artificial co-eval "simulation" that is periodic on its boundaries.
In this case, the simulation is simply zeros with ones on all three planes:
box = np.zeros((100, 100, 100))
box[0] = 1
box[:, 0] = 1
box[:, :, 0] = 1

cosmotile interpolates a regular, periodic box onto an arbitrary set of angular
coordinates on a single spherical shell (to get a full 'lightcone', just re-call
the function for different shell radii).
Evaluate at a latitude of zero, around the full longitude.
lat = np.zeros(1000)
lon = np.linspace(0, 2*np.pi, 1000, endpoint=False)

lc_slice = cosmotile.make_lightcone_slice(
 coeval = box,
 coeval_res = 1.0, # resolution of each cell of the box (in cMpc)
 latitude=lat,
 longitude=lon,
 distance_to_shell = 100, # the radius of the shell (in cMpc)
)

To get a lightcone between 100-200 Mpc:
distances = np.linspace(100, 200, 101)
lc = np.zeros((len(lat), len(distances)))

Reference

cosmotile

Cosmotile.

	
cosmotile.apply_rsds(field, los_displacement, distance, n_subcells=4)

	Apply redshift-space distortions to a field.

Notes

To ensure that we cover all the slices in the field after the velocities have
been applied, we extrapolate the densities and velocities on either end by the
maximum velocity offset in the field.
Then, to ensure we don’t pick up cells with zero particles (after displacement),
we interpolate the slices onto a finer regular grid (in comoving distance) and
then displace the field on that grid, before interpolating back onto the original
slices.

	Parameters:

	
	field (ndarray) – The field to apply redshift-space distortions to, shape (nslices, ncoords).

	los_displacement (ndarray) – The line-of-sight “apparent” displacement of the field, in pixel coordinates.
Equal to v / H(z) / cell_size.
Positive values are towards the observer, shape (nslices, ncoords).

	distance (ndarray) – The comoving distance to each slice in the field, in units of the cell size.
shape (nslices,).

	n_subcells (int)

	Return type:

	ndarray

	
cosmotile.get_distance_to_shell_from_redshift(z, cell_size, cosmo=FlatLambdaCDM(name='Planck18', H0=<Quantity 67.66 km / (Mpc s)>, Om0=0.30966, Tcmb0=<Quantity 2.7255 K>, Neff=3.046, m_nu=<Quantity [0., 0., 0.06] eV>, Ob0=0.04897))

	Get a distance to a shell, in units of cell size, from a given redshift.

	Parameters:

	
	z (float) – The redshift

	cell_size (Quantity) – The resolution of the coeval simulation, in comoving units.

	cosmo (FLRW) – The astropy cosmology.

	Returns:

	The distance, in units of pixels, to the shell.

	Return type:

	distance

	
cosmotile.make_healpix_lightcone_slice(nside, order='ring', **kwargs)

	Create a healpix lightcone slice in angular coordinates.

This is a simple wrapper around make_lightcone_slice() that sets up angular
co-ordinates from a healpix grid.

	Parameters:

	
	nside (int) – The Nside parameter of the healpix map.

	order (Literal['ring', 'nested']) – The ordering of the pixels in the healpix map.

	kwargs (Any)

	Return type:

	Generator

:param All other parameters are passed through to make_lightcone_slice().:

	
cosmotile.make_lightcone_slice(*, coevals, **kwargs)

	Create a lightcone slice in angular coordinates from two coeval simulations.

Interpolates the input coeval box to angular coordinates.

	Parameters:

	
	coevals (Sequence[ndarray] | ndarray) – An iterable of rectangular coeval simulations to interpolate to the angular
coordinates. Must have three dimensions (not necessarily the same size). Each
box must have the same shape, and all are assumed to be at the same coordinates.
Each coeval box can be a different simulated field.

	kwargs (Any)

	Return type:

	Generator

:param All other parameters are passed to make_lightcone_slice_interpolator().:

	Yields:

	field – Each interpolated field on the angular coordinates.

	Parameters:

	
	coevals (Sequence[ndarray] | ndarray)

	kwargs (Any)

	Return type:

	Generator

	
cosmotile.make_lightcone_slice_interpolator(*, latitude, longitude, distance_to_shell, interpolation_order=1, origin=None, rotation=None)

	Create a callable interpolator for a lightcone slice.

	Parameters:

	
	latitude (ndarray) – An array of latitude coordinates onto which to tile the box. In radians from
-pi/2 to pi/2

	longitude (ndarray) – An array, same size as latitude, of longitude coordinates onto which to tile the
box. In radians from 0 to 2pi.

	distance_to_shell (float) – The distance to the spherical shell onto which to interpolate, in units of
the cell-size of the coeval box(es) you wish to interpolate.

	interpolation_order (int) – The order of interpolation. Must be in the range 0-5.

	origin (ndarray | tuple[float, float, float] | None) – Define the location of the centre of the spherical shell, assuming that the
(0,0,0) pixel of the coeval box is at (0,0,0) in cartesian coordinates.

	rotation (Rotation | None) – The rotation by which to rotate the spherical coordinates before interpolation.
This is done before shifting the origin, and is equivalent to rotating the
coeval box beforing tiling it.

	Returns:

	A callable that takes a 3D array of coeval values and returns a 2D array of
interpolated values on a redshift slice.

	Return type:

	interpolator

	
cosmotile.make_lightcone_slice_vector_field(coeval_vector_fields, interpolator)

	Interpolate a 3D vector field to a lightcone slice as a line-of-sight component.

This takes a sequence of 3D vector fields, eg. the velocity field, and interpolates
each component to the lightcone slice. It then computes the line-of-sight component
of each interpolated vector field, where positive values are oriented towards the
observer.

	Parameters:

	
	coeval_vector_fields (Sequence[Sequence[ndarray]]) – An iterable of 3D vector fields to interpolate to the lightcone slice. Each
vector field must be an iterable of 3 3D arrays, each of the same shape.

	interpolator (Callable[[ndarray], ndarray]) – A callable that takes a 3D array of coeval values and returns a 2D array of
interpolated values on a redshift slice. This should be created by
make_lightcone_slice_interpolator() using the properties of the
coeval vector fields.

	Yields:

	los_component – The line-of-sight component of each interpolated vector field.

	Return type:

	Generator

	
cosmotile.transform_to_pixel_coords(*, comoving_radius, latitude, longitude, origin=None, rotation=None)

	Transform input spherical coordinates to pixel coordinates wrt a coeval box.

	Parameters:

	
	comoving_radius (Quantity) – The radius of the spherical coordinates (in units of the cell size).

	latitude (ndarray) – An array of latitude coordinates onto which to tile the box. In radians from
-pi/2 to pi/2

	longitude (ndarray) – An array, same size as latitude, of longitude coordinates onto which to tile the
box. In radians from 0 to 2pi.

	origin (Quantity | tuple[float, float, float] | None) – Define the location of the centre of the spherical shell, assuming that the
(0,0,0) pixel of the coeval box is at (0,0,0) in cartesian coordinates.
In units of the cell size.

	rotation (Rotation | None) – The rotation by which to rotate the spherical coordinates before interpolation.
This is done before shifting the origin, and is equivalent to rotating the
coeval box beforing tiling it.

	Return type:

	ndarray

Contributor Guide

Thank you for your interest in improving this project.
This project is open-source under the MIT license [https://opensource.org/licenses/MIT] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	Source Code [https://github.com/steven-murray/cosmotile]

	Documentation [https://cosmotile.readthedocs.io/]

	Issue Tracker [https://github.com/steven-murray/cosmotile/issues]

	Code of Conduct

How to report a bug

Report bugs on the Issue Tracker [https://github.com/steven-murray/cosmotile/issues].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker [https://github.com/steven-murray/cosmotile/issues].

How to set up your development environment

You need Python 3.8+. Install the package with development requirements:

$ pip install -e .

You can now run an interactive Python session.

How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session.
For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.

How to submit changes

Open a pull request [https://github.com/steven-murray/cosmotile/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	Include unit tests. This project maintains 100% code coverage.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience

	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or advances of
any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email address,
without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
steven.g.murray@asu.edu.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of
actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the
community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by
Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

License

MIT License

Copyright © 2022 Steven Murray

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 cosmotile	

Index

 A
 | C
 | G
 | M
 | T

A

 	
 	apply_rsds() (in module cosmotile)

C

 	
 	
 cosmotile

 	module

G

 	
 	get_distance_to_shell_from_redshift() (in module cosmotile)

M

 	
 	make_healpix_lightcone_slice() (in module cosmotile)

 	make_lightcone_slice() (in module cosmotile)

 	make_lightcone_slice_interpolator() (in module cosmotile)

 	
 	make_lightcone_slice_vector_field() (in module cosmotile)

 	
 module

 	cosmotile

T

 	
 	transform_to_pixel_coords() (in module cosmotile)

 _static/file.png

nav.xhtml

 Table of Contents

 		
 Cosmotile

_static/minus.png

_static/plus.png

